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Abstract

Comparativism is the position that the fundamental doxastic state con-
sists in comparative beliefs (e.g., believing p to be more likely than q), with
partial beliefs (e.g., believing p to degree x) being grounded in and ex-
plained by patterns amongst comparative beliefs that exist under special
conditions. In this paper, I develop a version of comparativism that orig-
inates with a suggestion made by Frank Ramsey in his ‘Probability and
Partial Belief’ (1929). By means of a representation theorem, I show how
this ‘Ramseyan comparativism’ can be used to weaken the (unrealistically
strong) conditions required for probabilistic coherence that comparativists
usually rely on, while still preserving enough structure to let us retain the
usual comparativists’ account of quantitative doxastic comparisons.

1 Introduction
For theorists who deal in partial beliefs, a pressing issue concerns the basis of
their measurement and quantification. It is typical to represent the strengths with
which propositions are believed with real numbers, or (especially in recent years)
with intervals of the reals. Moreover, it’s usually taken for granted that these
numerical representations encode more than merely ordinal—or: quantitative—
information. For instance, most would be happy to treat the following inference
as valid:1

1. α believes p to degree x
2. α believes q to degree y
3. x = n · y
∴ α believes p n times as much as she believes q

*Email: e.j.r.elliott@leeds.ac.uk. Comments welcome; helpful comments doubly so. Do not
cite without permission. Please note that this paper has nothing to do with Ramseyfication.

1 We assume of course that p and q are being measured on the same scale.
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Making sense of this kind of quantitative information is a priority in particular
for comparativism, the position that the fundamental doxastic state consists
in comparative beliefs (e.g., believing p to be more likely than q), with partial
beliefs (e.g., believing p to degree x) being grounded in and explained by patterns
amongst comparative beliefs that exist under special conditions.

By drawing on an analogy with the measurement of length, mass, and other
basic extensive quantities, comparativists have been able to state sufficient con-
ditions under which quantitative information can plausibly be extracted from
an agent’s ordinal doxastic comparisons. (See de Finetti 1931, 1937; Kraft et al.
1959; Scott 1964; Fine 1973, pp.68ff; Fishburn 1986; Stefánsson 2017.) As things
stand, though, these conditions tend to be quite strong indeed—essentially im-
posing a qualitative form of probabilistic coherence on the agent. What compara-
tivism currently lacks is a detailed answer as to whether, and how, the conditions
can be relaxed so as to accommodate quantitative comparisons for agents more
realistically construed.

This paper concerns a comparativist proposal that originates with a brief
remark made in Frank Ramsey’s note ‘Probability and Partial Belief’ (1929). I
develop Ramsey’s idea, using it as the basis for a representation theorem with
axioms weaker than those required for probabilistic coherence. Moreover, I show
how a ‘Ramseyan comparativism’ nicely accommodates the usual comparativist
account of quantitative comparisons, by establishing more general conditions
under which the purported analogy with the measurement of extensive physical
quantities can be taken to hold.

I begin by introducing some key terms and assumptions in §2. I then pro-
vide an outline of the usual (probabilistic) comparativist account of quantitative
comparisons in §3, before discussing the need for generalisation in §4. Finally, in
§5, I develop the Ramseyan version of comparativism.

2 Basic Notation and Assumptions
I use ‘α’ to denote an arbitrary doxastic agent. I assume that the propositions
regarding which α has beliefs can be modelled as subsets of some space of possible
worlds, Ω. Furthermore, I use ‘B’ to denote that set of propositions regarding
which α has beliefs (i.e., whether partial or comparative). So, if α considers p to
be more likely than q, then both p and q will be in B; and if α partially believes r
to whatever degree, then r will also be in B. For the sake of simplicity, I assume
that B is a finite algebra of sets on Ω:

Definition 2.1 B is a algebra of sets on Ω iff B ⊆ ℘(Ω), and ∀p, q ∈ ℘(Ω),

(i) Ω ∈ B

(ii) If p ∈ B, then Ω \ p ∈ B

(iii) If p, q ∈ B, then p ∪ q ∈ B

Furthermore, a non-empty element a ∈ B is an atom iff ∀p ∈ B, a ∩ p = a
or a ∩ p = ∅

2



I assume that α’s comparative beliefs can be modelled with a single binary
relation % on B, where:

p % q iff α believes p at least as much as she believes q

I will refer to % as α’s belief ranking. Implicit in this last assumption is a com-
mitment that comparativists in general need not accept, that’s worth pausing to
highlight. Where �, ≺, ∼, and - stand for the doxastic comparatives more, less,
equally, and at most as much as respectively, I am essentially assuming that the
following is appropriate:

Definition 2.2 ∀p, q ∈ B,

(i) p � q iff q ≺ p
(ii) p % q iff q - p

(iii) p ∼ q iff p % q and q % p
(iv) p � q iff p % q and q 6% p

From (iii) and (iv), it follows that ∼ and � constitute the symmetric and asym-
metric parts of % respectively; hence,

p % q iff p � q or p ∼ q

Nothing about Definition 2.2 should be considered obvious or trivial. For exam-
ple, contrary to (iii) and (iv), α might think that p is at least as likely as q,
without thereby thinking either that p is more likely than q, or that p is just
as likely as q. Nevertheless, Definition 2.2 will help to simplify the following
discussion considerably.

3 Quantitative Comparisons: The Usual Story
To get an initial sense of why comparativists might have troubles accounting for
quantitative comparisons, contrast the purely qualitative comparison (1) with
the quantitative comparisons (2) and (3):

(1) α believes p more than she believes q
(2) α believes p twice as much as she believes q
(3) α believes p much more than she believes q

Any adequate account of what our beliefs are like needs to explain the clearly
sensible distinctions between these claims.2 However, (2) and (3) present a prima
facie problem for comparativism. Each implies (1), and in that sense carry at
least as much information as is carried by the purely qualitative comparison.
In the other direction, though, (1) implies neither (2) nor (3). Knowing just
that α has more confidence in p than in q tells us nothing about how much
more confidence is involved. Since comparativism can only help itself directly to

2 The interested reader can see (Vassend forthcoming) and (Levinstein 2013, pp.23ff) for
discussion on why it’s important for theorists to accommodate these kinds of comparisons.
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qualitative comparisons of the kind found in (1), it doesn’t seem to have enough
resources to explain quantitative comparisons.

By drawing on the theory of measurement, however, comparativists have a
powerful response. We begin with an analogy, to show how it’s possible to extract
quantitative information about lengths from purely qualitative comparisons of
relative length. I then discuss how the same strategy might be applied to beliefs.

Let o1 and o2 refer to a pair of concrete objects, and consider the following:

(4) o1 is longer than o2
(5) o1 is twice as long as o2
(6) o1 is much longer than o2

(5) obviously contains strictly more information than (4), and it’s easy to see
what that additional information amounts to. Suppose you were to take two
objects the same length as o2 which share no parts, and join them end-to-end;
(5) then implies that the resulting object would be just as long as o1. Roughly:
o1 is as long as two ‘copies’ of o1 joined end-to-end. Call the operation of joining
objects end-to-end concatenation. Intuitively, concatenation acts as a qualitative
analogue of adding objects’ lengths together. And once we have a way of saying
what it is to ‘add’ lengths, it’s a short step to explaining what it is for one object
to be n times as long as another, or much longer than another. So, for (6), say
that o1 is much longer than o2 just in case the difference in length between the
two is at least that of some contextually-determined threshold length o3. Then,
(6) holds whenever o1 is at least as long as o2 concatenated with any object no
longer than o3.

Thus, we’ve been able to give real-world, qualitative meaning to the quanti-
tative comparisons in (5) and (6) wholly by reference to properties possessed by
the is longer than relation that it holds in connection to concatenation opera-
tions. And we can make the analogy between addition and concatenation precise.
Where

o1 %? o2 iff o1 is at least as long as o2,
o1 ⊕ o2 = the concatenation of o1 and o2,

it’s safe to presume that %? is transitive and complete, and that ⊕ is positive,
commutative, associative, and qualitatively additive with respect to %?, in the
respective senses that for all objects o1, o2, o3 with non-zero length that share no
parts,

(i) o1 ⊕ o2 �? o1 (%?-positivity)
(ii) o1 ⊕ o2 ∼? o2 ⊕ o1 (%?-commutativity)

(iii) o1 ⊕ (o2 ⊕ o3) ∼? (o1 ⊕ o2)⊕ o3 (%?-associativity)
(iv) o1 %? o2 iff o1 ⊕ o3 %? o2 ⊕ o3 (%?-qualitative additivity)

That is: inasmuch as %? behaves like ≥ over the real numbers, so too does ⊕
behave like +.3 And from this starting point, it is straightforward to develop a

3 See (Krantz et al. 1971, §3.2.1) for further discussion. Conditions (i)-(iv) are not yet
sufficient to establish that ⊕ can be mapped onto + whenever %? is transitive and complete;
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ratio-scale measure of length that can explicitly capture the quantitative struc-
ture identified in %?.

So, let’s return to comparativism. To establish that the same strategy can
be put towards an explanation of the distinctions between (1), (2), and (3),
comparativists need to identify an operation on the relata of belief rankings
(i.e., sets of worlds) which behaves sufficiently like addition with respect to those
rankings to justify treating it as the qualitative analogue thereof. It is common at
this point to suggest the union of disjoint sets, but it’s possible to say something
a little more general than that. Where certain structural conditions hold true
of %, a qualitative analogue of addition exists in the union of what I’ll call
epistemically exclusive propositions, where two propositions are epistemically
exclusive for α just in case she has minimal confidence in their intersection. (I
define this formally below.)

To fully spell out the present suggestion, I’ll need some more vocabulary.
First, say that a real-valued function Cr on B agrees with % just in case, for all
p and q in B,

p % q iff Cr(p) ≥ Cr(q)

Say also that Cr almost agrees with % just in case, for all p and q in B,

p % q only if Cr(p) ≥ Cr(q)

The first step is then to suppose that a probability function agrees with %, where:

Definition 3.1 Cr : B 7→ R is a probability function iff B is a algebra of
sets on Ω, and ∀p, q ∈ B,

(i) Cr(Ω) = 1
(ii) Cr(p) ≥ 0
(iii) If p ∩ q = ∅, then Cr(p ∪ q) = Cr(p) + Cr(q)

Now, the conditions under which a probability function agrees with a belief
ranking are well known. In the finite case, these conditions are summarised in
the following theorem (due to Scott 1964):4

Theorem 3.1 If B is finite algebra of sets on Ω and % is a binary relation
on B, then there is a probability function Cr that agrees with % iff A1-A5
hold:

A1. % is complete

A2. % is reflexive

A3. ∅ 6% Ω

for that, an Archimedean condition is also needed: if o1 �? o2, then for any o3, o4, there exists
a positive integer n such that 〈n〉o1⊕ o3 %? 〈n〉o2⊕ o4, where 〈n〉o1 is defined: 〈1〉o1 = o1, and
〈n + 1〉o1 = 〈n〉o1 ⊕ o1. Since the Archimedean condition in the probabilistic case (discussed
below) is significantly more difficult to state, I’ve neglected to mention it here. A statement
of an Archimedean condition for the additive measurement of belief rankings can be found in
(Chateauneuf and Jaffray 1984, p.193).

4 Given A1 and A5, A2 is redundant. It is included for a later discussion.
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A4. ∀p ∈ B, p % ∅
A5. Where 1p denotes the indicator function of p, and (pi)

n
i=1 and (qi)

n
i=1

are finite sequences of propositions from B, then if

(i)
∑n

i=1 1pi(ω) =
∑n

i=1 1qi(ω) for all ω ∈ Ω, and
(ii) pi % qi, for i = 1, ..., n− 1,

then qn % pn

For present purposes, the specifics of the axioms A1-A5 don’t matter. What’s im-
portant is what they imply with respect to epistemically exclusive propositions,
which are defined as follows:5

Definition 3.2 ∀p ∈ B,

(i) p is minimal iff q % p, for all q ∈ B

(ii) p is maximal iff p % q, for all q ∈ B

Definition 3.3 P ⊆ B is a set of epistemically exclusive propositions iff, for
any P′ ⊆ P s.t. |P′| ≥ 2,

⋂
P′ ∼ q for some minimal q

Definition 3.4 p, q, ... are epistemically exclusive iff there is a set of epis-
temically exclusive propositions P s.t. p, q, ... ∈ P

Assuming that if p is minimal then α has exactly zero confidence in p, Definition
3.3 plausibly characterises what it is for α to believe that at most one member of
P can be true. In the context of A1-A5, p and q are epistemically exclusive just
in case α considers their intersection to be as likely as ∅. The somewhat tortured
sequence of definitions given here will be useful below, when I generalise away
from probability functions.

I can now state the crucial point in relation to the quantification of belief:
A1-A5 imply that % is transitive and complete, and that for all epistemically
exclusive propositions p, q, r,

(i) p ∪ q % q, with � replacing % when p is non-minimal (%-positivity)
(ii) p ∪ q ∼ q ∪ p (%-commutativity)

(iii) p ∪ (q ∪ r) ∼ (p ∪ q) ∪ r (%-associativity)
(iv) p % q iff p ∪ r % q ∪ r (%-qualitative additivity)

Furthermore, since B is an algebra of sets on Ω, whenever p ⊆ q, there will
be some proposition r disjoint from (and therefore epistemically exclusive of) p
such that p∪ r = q. Hence, it’s possible to treat any non-empty proposition p in
B as the ‘sum’ of some sequence of ‘smaller’ propositions, p1, ..., pn.

To turn all this into a response to the challenge with which I began this sec-
tion, let probabilistic comparativism denote any version of comparativism com-
mitted to the following:

5 Definition 3.3 implies that every singleton set {p} ⊂ ℘(Ω) is trivially a set of epistemically
exclusive propositions. This is a feature, not a bug.
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Probabilistic Comparativism: If a probability function Cr agrees with
%, then Cr is an adequate model of α’s beliefs simpliciter

Note, of course, that the probabilistic comparativist is not committed to saying
that partial beliefs can only be modelled by probability functions. This would
clearly be unreasonable. For example, if all one cares about are ratios of strength
of belief, then whenever a real-valued function Cr adequately captures those
ratios, so too will any positive similarity transformation of Cr. Nor should it
be expected that the ‘adequate’ models are limited to Cr’s positive similarity
transformations. (Cf. Krantz et al. 1971, §3.9, for relevant discussion.) However,
it would be orthogonal to our purposes to investigate necessary and sufficient
conditions for representational adequacy here, and probabilistic comparativism
gives us enough to go on for now.

Taking probabilistic comparativism for granted, it’s apparent how we could
begin to account for quantitative comparisons. Supposing that α’s comparative
beliefs satisfy A1-A5, the union of epistemically exclusive propositions behaves
just as one would expect of any qualitative analogue of addition. From there, we
can start to cash out the meaning of quantitative belief comparisons. Consider
the following:6

General Ratio Principle (GRP): For n,m such that 0 < n ≤ m, if there
are m non-minimal epistemically exclusive propositions r1, ..., rm s.t.

(i) r1 ∼ · · · ∼ rm,
(ii) r1 ∪ · · · ∪ rm ∼ q, and

(iii) r1 ∪ · · · ∪ rn ∼ p,

then α believes p n/m times as much as q; furthermore, if α believes p n/m times
as much as q, and q n′/m′ times as much as r, then α believes p (n · n′)/(m ·m′)

times as much as r

So, for instance, α will take p to be twice as likely as q (and q half as likely as
p) if there is some proposition q′ disjoint from q such that q ∼ q′ and q ∪ q′ ∼ p.

Moreover, if a probability function Cr almost agrees with %, then Cr coheres
with the GRP, in the sense that whenever that principle implies that p is believed
n/m times as much as q, then

Cr(q) = n/m · Cr(q)

This means it’s possible to extend the account of quantitative comparisons just
given into the imprecise case. This will let us weaken one of the stronger axioms
mentioned in Theorem 3.1—in particular, A1, which states that % must be
complete. For non-ideal agents (and perhaps even for ideally rational agents),
completeness is widely considered implausible. Especially where B is very large,
we should expect plenty of gaps in %. Consider the following case, adapted from
(Fishburn 1986):

6 The first clause of the GRP is a generalisation of Stefánsson’s (forthcoming) ‘Ratio Prin-
ciple’. The second (inductive) clause is my own addition—see §5 for a case where it’s put to
work.
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p = The global population in 2100 will be greater than 13 billion
q = The next card drawn from this old and incomplete deck will be a heart

p and q are sufficiently far removed from one another that it’s hard to make a
judgement as to which is more likely than the other. Similar examples abound.

There is a natural way of dealing with incomplete belief rankings to which
comparativists can appeal here. Where F is any set of real-valued functions on
B, say that F agrees with % just in case for all p, q ∈ B,

p % q iff ∀Cr ∈ F, Cr(p) ≥ Cr(q)

Modelling beliefs by sets of numerical functions works by something akin to
supervaluation: only what’s common to every function in F is treated as having
real-world import. The following theorem from (Alon and Lehrer 2014) then
shows that the comparativist can do without A1 entirely:

Theorem 3.2 If B is finite algebra of sets on Ω and % is a binary relation
on B, then there exists a non-empty set of probability functions F that agrees
with % iff % satisfies A2-A4, and

A5?. Where (pi)
n
i=1 and (qi)

n
i=1 are finite sequences from B, and (ki)

n
i=1 is a

finite sequence from N, then if

(i)
∑n

i=1 ki · 1pi(ω) =
∑n

i=1 ki · 1qi(ω) for all ω ∈ Ω, and
(ii) pi % qi, for i = 1, ..., n− 1,

then qn % pn

Given A2-A4, A5? is stronger than A5 (see Harrison-Trainor et al. 2016). Note
also that while there may sometimes be more than one set of probability functions
F that agrees with %, the union of all such sets will itself agree with %. So there’s
always a unique F that agrees with % which is maximal with respect to inclusion
whenever % satisfies A2-A5?.

We can use imprecise-probabilistic comparativism to refer to any version of
comparativism committed to the following:

Imprecise-Probabilistic Comparativism: If a non-empty set of proba-
bility functions F agrees with % and F is maximal with respect to inclusion,
then F is an adequate model of α’s beliefs simpliciter

The imprecise version of probabilistic comparativism does not imply probabilistic
comparativism. The two positions will diverge when more than one probability
function (fully) agrees with %. Nevertheless, since any Cr in an agreeing set
F will itself almost agree with %, the imprecise-probabilistic comparativist can
retain the GRP—where the notion of coherence is extended in the obvious way
to sets of functions, if a set of probabilities F agrees with %, then F coheres
with the GRP.

8



4 The Limits of the Usual Story
We’ve seen that the union of epistemically exclusive propositions behaves like
addition when A1-A5 (or A2-A5?) are satisfied, but those are the kinds of con-
ditions we could only reasonably expect to be satisfied by an ideally rational
agent. An ordinary agent like α probably won’t satisfy all of these conditions—
arguably, not even to a very close approximation. For example, consider the
monotonicity property, which is a consequence of A2-A5:

If p ⊆ q and p, q ∈ B, then p - q (monotonicity)

Monotonicity generates a probabilistic version of the classic problem of logical
omniscience: if the worlds in Ω are closed under any consequence relation ⇒
whatsoever, then for all p, q ∈ B,

If p⇒ q, then p - q (logical omniscience)

That is, any monotonic belief ranking over a space of worlds closed under ⇒ is
necessarily coherent with respect to ⇒. And where ⇒ is any reasonably strong
consequence relation, it is not especially plausible that % will be monotonic for
ordinary agents.7

Moreover, it’s clear that the GRP cannot plausibly be applied to arbitrary
belief rankings. For instance, suppose that % includes the following, where q∩ q′
is minimal:

q ∼ q′ � p ∼ q ∪ q′ � q ∩ q′

To apply the GRP in this case is to invite absurdity: we wouldn’t want to say
that α believes p twice as much as q, even while q � p! Or, if that example
seems unrealistic—perhaps it requires α to be a little too irrational—then there
are countless others. Suppose that p1, ..., pn and q1, ..., qn+1 are two sequences
of epistemically exclusive propositions such that for i, j = 1, ..., n and k, l =
1, ..., n+ 1, pi ∼ pj, qk ∼ ql, and pi ∼ qk. Now suppose that

p1 ∪ · · · ∪ pn ∼ q1 ∪ · · · ∪ qn+1

The GRP now implies that

1. α believes p1 ∪ · · · ∪ pn n times as much as p1
2. α believes q1 ∪ · · · ∪ qn+1 n+ 1 times as much as p1
3. α believes p1 ∪ · · · ∪ pn exactly as much as q1 ∪ · · · ∪ qn+1

Certain kinds of irrationality ruled out by axioms A1-A5/A2-A5? render the
GRP inapplicable—essentially, by breaking the analogy between addition and
the union of epistemically exclusive sets. In the next section, I want to investigate

7 It might be that impossible worlds could help to make monotonicity seem more palatable.
So long as we are loose enough with what we count as a ‘world’, it’s easy enough to construct a
space of worlds Ω that isn’t closed under anything but the trivial consequence relation p⇒ q iff
p = q. I have argued elsewhere that this approach is problematic in the probabilistic context;
see (Elliott forthcoming).
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just how far we can push this analogy: at what point does it thoroughly break
down? But before we get to that, I’ll here briefly discuss why it’s important
to seek a more general basis for comparativism than the axioms required for
probabilistic coherence.

First, it would be unreasonable to say that α doesn’t have partial beliefs
merely because she’s not ideally rational, or that the satisfaction of a very strong
rationality condition like A5 is necessary for the meaningfulness of quantita-
tive comparisons.8 That would be manifestly implausible: even if she were quite
highly irrational, α could still believe one proposition much more than she be-
lieves another, or at least twice as much as she believes another.9 This should
be uncontroversial—only someone caught firmly in the grips of an unrealistic
picture of belief would think to deny it. Our capacity to make quantitative belief
comparisons is not hostage to any presupposition of idealised rationality. And
an explanation of quantitative comparisons that works only in the ideal case is,
at best, incomplete—and at worst, no explanation at all. All else being equal, it
would be better to have an account of how we make quantitative comparisons
that applies equally well to the lowest common denominator.

This is not to deny the obvious point that it’s often useful to get an expla-
nation of some phenomenon working for an idealised model before moving on
to less ideal cases. That is how science works in general, and it’s exactly how
we should expect things to work here. But an idealised model does real-world
explanatory work only to the extent that it does not depend critically on the
idealisations in question. Models have explanatory value when the conclusions
we can draw from them are robust under variations to their idealising conditions;
they should not break down when realism is added back in. In the present case,
then, it would be useful to have some assurance that the usual comparativist
account of quantitative comparisons does not depend critically on unrealistic
assumptions. Comparativism needs that the basic form of that explanation can
be extended to ordinary agents—else, it needs another story for how we make
quantitative comparisons.

5 Unconditional Ramseyan Comparativism
The alternative basis for comparativism that I will pursue in this section and
the next are inspired by the following remark in Ramsey (1929):

[...] ‘Well, I believe it to an extent 2/3’, i.e. (this at least is the most
natural interpretation) ‘I have the same degree of belief in it as in

8 I am of course aware that some Bayesians are happy to accept the probabilistic repre-
sentation of beliefs as descriptively adequate for real-life agents. The literature on how close
ordinary humans come to being probabilistically coherent is vast, and most of it controversial.
There’s more here than I can hope to address, so I’ll assume without further argument that
most agents deviate substantially from conditions like A1-A5/A2-A5?.

9 The point here is independent of the matter of how precise the partial beliefs of ordinary
agents are. Even if α’s beliefs were everywhere imprecise, she could still believe p at least twice
as much as q.
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p∨ q when I think p, q, r equally likely and know that exactly one of
them is true’. (p.256)

The idea is also discussed briefly by Brian Weatherson (2016, pp.223-4). However,
neither Ramsey nor Weatherson go beyond this initial suggestion, and as we’ll
see there are a few conditions that need to be met before we can use it to ground
a plausible account of partial belief.

In this paper, I stick to the letter of the quoted passage, and develop Ram-
sey’s idea within a comparativist framework that takes binary comparisons as
primitive. It is also possible to develop a version of the same idea within a
framework where quarternary comparisons are primitive; i.e., where

p, q % r, s iff α believes p given q at least as much as she believes r given s

However, space constraints dictate a focus on binary comparativism here.

To begin with, we will need some additional terminology:

Definition 5.1 A set of n epistemically exclusive propositions P is an n-scale
of p iff ∀q, r ∈ P, q ∼ r and

⋃
P ∼ p

We do not assume that % is monotonic with respect to set inclusion, nor that
∅ is minimal and Ω maximal. Of course, the axiomatisation to follow will be
consistent with these assumptions, but it’s not needed to get the Ramseyan
proposal off the ground. And one can certainly imagine an agent who is, e.g.,
less than certain of Ω.

We do, however, assume that if a proposition is maximal then α is certain of
its truth. Given this, we can now restate Ramsey’s idea: p is believed to degree
n/m iff

p ∼ q1 ∪ · · · ∪ qn,

where the q1, ..., qn belong to an m-scale {q1, ..., qn, ..., qm} of some maximal
proposition q. A good start—but there’s a natural extension that will be helpful
to incorporate into what follows. Consider this case:

a1 a2

a3

Ω

We have a simple algebra of sets with three atoms, a1, a2, and a3, and

Ω � a1 ∪ a3 ∼ a2 ∪ a3 � a3 ∼ a1 ∪ a2 � a1 ∼ a2 � ∅
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Assuming reflexivity, {Ω} is a 1-scale of Ω, and {a3, a1 ∪ a2} is a 2-scale of Ω, so
Ramsey would have us say that Cr(Ω) = 1 and Cr(a3) = Cr(a1 ∪ a2) = 1/2. a1
and a2 do not belong to any n-scale of Ω, so we do not yet have any purchase on
the strength with which they’re believed. However, {a1, a2} is a 2-scale of a1∪a2,
so it’s only reasonable to say that Cr(a1) = Cr(a2) = 1/4.

Or consider the following case:

a1

a2

a3

a4

a6

a5

Ω

Here, assume Ω is maximal and ∅ minimal, and % includes:

a5 ∪ a6 ∼ a1 ∪ a2 ∪ a3 ∪ a4 � a6 ∼ a1 ∪ a2 ∪ a3 � a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5

{a5 ∪ a6, a1 ∪ a2 ∪ a3 ∪ a4} is a 2-scale of Ω, and a1, a2, a3 are 3 members of the
4-scale {a1, a2, a3, a4} of a1 ∪ a2 ∪ a3 ∪ a4; we would therefore like to say that
Cr(a1 ∪ a2 ∪ a3) = 3/8. We note that {a6} is a 1-scale of a1 ∪ a2 ∪ a3; hence,
Cr(a6) = 3/8.

We can capture the foregoing points by means of the following definition:10

Definition 5.2 For integers n,m such that m ≥ n ≥ 0, m > 0, p is

(i) 0/m-valued if p is minimal and m/m-valued if p is maximal
(ii) n/m-valued if p ∼ q1∪· · ·∪qn′ , where the q1, ..., qn′ belong to an m′-scale

of an n′′/m′′-valued proposition, and (n′ · n′′)/(m′ ·m′′) = n/m

The generalised version of Ramsey’s suggestion now amounts to:

α believes p to degree n/m if p is n/m-valued

As such, define a Ramsey function as follows:

Definition 5.3 Cr : B 7→ [0, 1] is a Ramsey function (relative to %) iff, for
all p ∈ B, if p is n/m-valued, then Cr(p) = n/m

10 With a rich enough preference structure, we could also accommodate irrationally-valued
propositions. For an irrational real r, say that p is r-valued just in case (i) p ≺ q for every
n/m-valued q such that n/m > r, and (ii) p � q for every n/m-valued q such that r < n/m. But
this definition is plausible only under the supposition that there is some n/m-valued q for every
rational fraction n/m (such that m ≥ n ≥ 0). Thanks are due to Nicholas DiBella here; see
(DiBella MS) for additional discussion.
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The connection to the GRP is immediate. In fact, in the terminology of
Definition 5.1, the first (non-inductive) clause of the GRP states that for m ≥ n,
p is believed n/m times as much as q whenever P is an m-scale of q, and P′ ⊆ P

is an n-scale of p. In this case, Definition 5.2 says that if q is n′/m′-valued, then
p is (n · n′)/(m ·m′)-valued—that is, for any Ramsey function Cr,

Cr(p) = n/m · Cr(q)

Any Ramsey function recaptures the GRP almost in its entirety, with one limi-
tation: it cannot account for quantitative comparisons between propositions that
are not n/m-valued, for some n,m. Ultimately, a Ramsey function scales every
(non-minimal) n/m-valued proposition relative to the (or one of the) maximal
proposition(s). With respect to pairs of propositions that cannot be so scaled,
it’s possible for a Ramsey function to fail to cohere with the GRP. An example
of this would be the following:

a1

a2

a3

Ω

Where in this case,

Ω � a2 ∪ a3 � a1 ∪ a2 ∼ a1 ∪ a3 � a2 ∼ a3 � a1 � ∅

The only non-trivial n-scale here is the 2-scale {a2, a3} of a2 ∪ a3; but, since
a2 ∪ a3 cannot be assigned a definite value relative to Ω, the values of a2, a3 and
a2 ∪ a3 are likewise left indeterminate.11

Ramsey doesn’t say anything about those circumstances where p is not n/m-
valued, and this is a lacuna in the present proposal—though perhaps not a
very troubling one. One might assume that such cases don’t exist. Let B? ⊆ B

designate the set of n/m-valued propositions. Then, the assumption would be:

B1. B? = B

B1 is not implied by A1-A5, and in that sense is a stronger condition than re-
quired for probabilistic coherence. However, it’s worth noting that B1 is implied
by the following continuity assumption, used in Stefánsson’s (2017, forthcoming)
defence of probabilistic comparativism:12

11 Below we’ll add an axiom (B3) to ensure that Cr(a2) = Cr(a3), but not enough to guar-
antee that Cr(a2 ∪ a3) = 2 · Cr(a2). Note that in this kind of case, there will be more than one
probability function that agrees with %; each is a Ramsey function relative to %.

12 The proof of this is straightforward: let q be maximal, and consider every pair p, q ∈ B

where p is non-minimal; Continuity then states that {p} is a 1-scale of the union of n members
of an m-scale of q. Continuity is explicitly assumed in (Stefánsson forthcoming) under the title
‘Savage Continuity’, and also implied (in the context of A1-A5) by ‘Suppes Continuity’.
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Continuity: For all non-minimal p, q ∈ B, there are p′, q′ ∈ B such that
p ∼ p′, q ∼ q′, and p′ and q′ are each the union of some subset of a finite set
of disjoint propositions {r1, ..., rn} such that ri ∼ rj for i, j = 1, ..., n

I suspect that B1 is close to correct in many ordinary cases, and we can treat
it as a reasonable idealisation for now. Below, I’ll show how to do without it.
Nevertheless, B1 only ensures that every p ∈ B is n/m-valued; it isn’t yet enough
to ground a plausible comparativist story. There are two problems that can arise
in the absence of any additional assumptions about %.

First: nothing has been said to guarantee that Definition 5.3 is consistent.
For note that, without further assumptions, it’s entirely possible for, e.g., p ∼ q,
where for some r, p belongs to a 2-scale of r and q belongs to a 3-scale of r.
This is clearly undesirable: α can’t believe p to the precise degrees 1/2 and 1/3
simultaneously! If Ramsey functions are to be well defined, we’ll need to ensure
that if p is n/m-valued and n′/m′-valued, then n/m = n′/m′.

Second: nothing has been said to guarantee that a Ramsey function relative
to % will agree with %. Indeed, nothing ensures that Cr(p) ≥ Cr(q) if or only
if p % q. For example, p could be 1/2-valued, and q 1/4-valued, yet q % p. This
is wholly unacceptable: if the order of the numerical values we assign to partial
beliefs doesn’t at least match up to the belief ranking, then there’s no natural
sense in which those values represent the strengths with which those propositions
are believed.

In the context of B1, we can kill these two birds with one stone, using the
following (quite strong) axiom:

B2. If p is n/m-valued and q is n′/m′-valued, then p % q iff n/m ≥ n′/m′

B2 implies that % is transitive and complete over B?, and, interestingly, that if p
and q belong to an n-scale of r and r is non-minimal, then p 6⊆ q.13 There are as
such some logical restrictions on what kinds of propositions we can ‘add’ using
the Ramseyan process—it’s not the case that “anything goes”. More importantly,
B2 is obviously necessary (and given B1, sufficient) to avoid the two foregoing
problems, as the following theorem (proven in Appendix A) shows:

Theorem 5.1 If % is a binary relation on B ⊆ ℘(Ω), then % satisfies B2
iff there exists a function Cr : B 7→ R such that:

(i) Cr is a Ramsey function with respect to %, and
(ii) For all p, q ∈ B?, p % q iff Cr(p) ≥ Cr(q)

Furthermore, Cr is the unique Ramsey function relative to % that agrees with
% iff % satisfies B1

It is easy to see that B2 is implied already by the axioms A1-A5 (likewise
A2-A5?). To see that B1 and B2 are consistent with non-probabilistic Ramsey

13 B2 entails that if an n-scale P of r contains minimal propositions, then r and every p ∈ P

is minimal. If p, q belong to some n-scale P of r, then if p ⊆ q, p ∩ q = p. Since p is minimal,
r is minimal.
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functions, consider the following simple example. Let Cr’s domain be as follows:14

B = {∅, p, q, p ∩ q, p ∪ q,Ω}

Now suppose that % is transitive and reflexive, and:

p ∪ q � Ω ∼ p ∼ q � p ∩ q ∼ ∅

% satisfies B1 and B2. Since {p, q} is a 2-scale of the maximal proposition p∪ q,
Cr(p ∪ q) = 1 and Cr(p) = Cr(q) = 1/2. Ω is neither maximal nor a member of
any non-trivial n-scale, but it’s just as likely as p; hence Cr(Ω) = 1/2.

Essentially, B2 imposes a limited kind of qualitative additivity on %, specifi-
cally with respect to relations between propositions constructed out of the same
n-scale of an n′/m′-valued proposition. Roughly: within an n-scale, % behaves
‘probabilistically’—but not every proposition can be constructed out of members
of an appropriate n-scale, and across n-scales % can behave quite irrationally.

On the basis of Theorem 5.1, we could characterise a comparativist view as
Ramseyan whenever it implies:

Ramseyan Comparativism: If α’s belief ranking % satisfies B1 and B2
and Cr is a Ramsey function relative to %, then Cr is an adequate model of
α’s beliefs simpliciter

But I think we can do better still than Ramseyan comparativism, and adopt a
set-of-functions representation of % for the cases where B1 fails. For this, we will
need the following axiom:

B3. % is a preorder

B3 is obviously necessary if any real-valued function or set thereof is to agree with
%, regardless of whatever other restrictions we want to place on that relation.
For simplicity, we focus on the case where B is countable; thus,

Theorem 5.2 If % is a binary relation on a countable set B ⊆ ℘(Ω), then
% satisfies B2 and B3 iff there exists a non-empty set F of functions into
[0, 1] that agrees with %, where every Cr ∈ F is a Ramsey function relative
to %

A proof is provided in Appendix B. Note of course that whenever B2 and B3 are
satisfied, there will be a unique F that’s maximal with respect to inclusion. So,
we let imprecise-Ramseyan comparativism denote any comparativist view that
implies:

14 For the purposes of Theorem 5.1, B can be any subset of ℘(Ω). For the present example,
supposing that B is an algebra of sets would not change the point (e.g., we could set every
other proposition equal to ∅).
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Imprecise-Ramseyan Comparativism: If a non-empty set F of functions
into [0, 1] agrees with α’s belief ranking %, where every Cr ∈ F is a Ramsey
function relative to %, and F is maximal with respect to inclusion, then F

is an adequate model of α’s beliefs simpliciter

According to imprecise-Ramseyan comparativism, any proposition p 6∈ B? will
not usually be assigned a precise numerical value, though we can still superval-
uate over F to generate ‘imprecise’ strengths of belief.

Furthermore, if any probability function Cr almost agrees with %, then %
satisfies B2 and B3, and Cr is ipso facto a Ramsey function relative to %. This
is a nice result to have: a Ramsey function representation of % never conflicts
with a probability function, or set of probability functions, with respect to n/m-
valued propositions. Moreover, most (precise and imprecise) probabilistic com-
parativists will at least want to say that if a probability function Cr agrees with
α’s continuous belief ranking, then Cr adequately represents α’s beliefs. The (im-
precise) Ramseyan comparativist can say exactly this, without supposing that
% satisfy conditions that are as strong as A1-A5 or A2-A5?.

The cost, of course, is that the Ramseyan comparativist—without further
additions to the position as outlined here—has to give up on quantitative com-
parisons between pairs of propositions that are not n/m-valued. B2 and B3 are
not sufficient for total coherence with the GRP if any such propositions exist,
but they are necessary if we make some very minimal scaling assumptions:

Theorem 5.3 If Cr coheres with the GRP, then at least one of the following
is false:

(i) % violates B2
(ii) There are p, q ∈ B such that p � q

(iii) If p is minimal, then Cr(p) = 0
(iv) Cr agrees with %

Furthermore, if a set of real-valued functions F coheres with the GRP, then
at least one of (i), (ii), (v), or (vi) is false, where:

(v) If p is minimal, then ∀Cr ∈ F, Cr(p) = 0
(vi) F agrees with %

6 Conclusion
A belief ranking that satisfies B2 and B3 has only a very weak ‘additive’ struc-
ture, and it’s unclear how we could remove even these restrictions while preserv-
ing enough structure with respect to the union of epistemically exclusive sets to
justify treating it as even a limited qualitative analogue of addition. If this is
right, then we have an initial answer to the question posed in §4: the analogy
with addition thoroughly breaks down when either B2 or B3 are violated.
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Appendix A: Theorem 5.1
Existence, left-to-right : Assume B2. If p is n/m-valued and n′/m′-valued, then
n/m = n′/m′. So it’s possible to assign a unique r ∈ R to every p ∈ B? so as to
define a Ramsey function Cr relative to the restriction of % to B?. Cr can then be
extended from B? to B consistent with that function being a Ramsey function
relative to the entirely of % (e.g., let Cr(p) = 0 for all p /∈ B?). This establishes
clause (i). Now suppose that for p, q ∈ B?, p % q. Since for some n,m, n′,m′, p
is n/m-valued and q is n′/m′-valued, so n/m ≥ n′/m′. By (i), Cr(p) ≥ Cr(q). Next
suppose that Cr(p) ≥ Cr(q). Since Cr is a Ramsey function, p is n/m-valued and
q is n′/m′-valued, for n/m ≥ n′/m′. So, from B2, p % q. This establishes clause (ii).

Existence, right-to-left : Suppose Cr : B 7→ R satisfies (i) and (ii). Next
suppose that p is n/m-valued and q is n′/m′-valued. So, Cr(p) = n/m and Cr(q) =
n′/m′. Since Cr agrees with % over B?, so n/m ≥ n′/m′ iff p % q.

Uniqueness : The left-to-right is obvious by consideration of its contrapositive
and Definition 5.3. The restriction of Cr to B? is the unique Ramsey function
relative to the restriction of % to B?; so if B? = B then Cr is the unique Ramsey
function that agrees with % simpliciter.

Appendix B: Theorem 5.2
Existence, left-to-right : Assume % satisfies B2, B3, and B is countable. If B1,
then the existence of the set F follows from the uniqueness condition of Theorem
5.1. We therefore focus on the case where B? ⊂ B. From B3, there’s at least one
non-empty set G of functions Cr : B 7→ R that agrees with %. A proof of this
can be found in (Dubra et al. 2004, p.556). What we need to show is that there
exists a non-empty subset G∗ of G such that:

1. G∗ agrees with %
2. ∀Cr ∈ G∗, there’s a strictly increasing transformation Cr′ of Cr s.t.:

(a) Cr′ is bounded above by 1 and below by 0
(b) Cr′ is a Ramsey function with respect to %

The set F of all such transformations will agree with %, completing the proof.

There are three cases to consider:

1. B? is empty
2. B? contains only minimal and/or maximal elements of B
3. B? contains non-minimal, non-maximal elements of B

The first two are straightforward and omitted. For the third case, note that if G
agrees with % and p � q, then:

(i) Cr(p) ≥ Cr(q), for all Cr ∈ G

(ii) Cr(p) > Cr(q), for at least one Cr ∈ G
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Hence, for any Cr ∈ G, if p � q then either Cr(p) > Cr(q) or Cr(p) = Cr(q). For
p, q ∈ B?, B2 implies that for any Ramsey function, if p � q, then Cr(p) > Cr(q);
so, it’s not in general true that if G agrees with %, then for every Cr ∈ G there
will be a strictly increasing transformation of Cr that’s also a Ramsey function
with respect to %. But define G∗ ⊆ G as follows:

G? = {Cr ∈ G : if p, q ∈ B? and p � q, then Cr(p) > Cr(q)}

G? agrees with %, and by (ii), we know that it’s non-empty. If we let G◦ denote
the set of restrictions of every Cr ∈ G? to B?, then the unique Ramsey function
Cr? on B? is a strictly increasing transformation of every Cr ∈ G◦. So we just
have to show that for each Cr ∈ G?, there’s an extension of Cr? from B? to B

that’s a strictly increasing transformation of Cr. Let Cr be any function in G?.
For any set of non-minimal, non-maximal propositions P = {p1, p2, . . . } ⊆ B,
there’s a unique pair q, r ∈ B? such that:

(i) q � pi � r, for all pi ∈ P

(ii) There’s no s ∈ B? such that q � s � pi or pi � s � q, for all pi ∈ P

So for any pi ∈ P, Cr(q) > Cr(r) and Cr(q) ≥ Cr(pi) ≥ Cr(r). From the fact that
Cr?(q), Cr?(r) are rational and Cr?(q) 6= Cr?(r), for any way the Cr(pi) might be
ordered between Cr(q) and Cr(r), there are sufficient real values between Cr?(q)
and Cr?(r) to recreate that order.

Existence, right-to-left : Suppose there’s a non-empty set F of functions into
[0, 1] that agrees with %, where every Cr ∈ F is a Ramsey function relative to
%. That % satisfies B3 is straightforward. Where B? is empty, B2 is trivially
satisfied. So, suppose B? 6= ∅. For every Cr ∈ F, Cr is a Ramsey function
with respect to %, so if p is n/m-valued and q n′/m′-valued, Cr(p) = n/m and
Cr(p) = n′/m′. Since F agrees with %, p % q iff n/m ≥ n′/m′.

Appendix C: Theorem 5.3
For the first part of the theorem, we prove the contrapositive. Suppose first that
% violates B2, and that Cr agrees with %. From the falsity of B2, there exists
a pair p, q such that p is n/m-valued, q is n′/m′-valued, and p % q 6↔ n/m ≥ n′/m′.
There are three cases to consider:

(1) Neither p nor q is minimal
(2) Both p and q are minimal
(3) Exactly one of p or q is minimal

Start with (1). Focus first on p, and let r henceforth designate some maximal
proposition. (If p is n/m-valued and non-minimal, then a maximal proposition
exists.) Since it’s n/m-valued, p is either:

(i) The union of n members of an m-scale of r, or
(ii) The union of n′′ members of an m′′-scale of ... the union of n′′′ members

of an m′′′-scale of r
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In case (i), Cr coheres with the GRP only if Cr(p) = n/m · Cr(r); in case (ii),
only if Cr(p) = (n′′ · ... · n′′′)/(m′′ · ... ·m′′′) · Cr(r), where (n′ · ... · n′′)/(m′ · ... ·m′′) = n/m.
The same reasoning applies to q, mutatis mutandis, so Cr coheres with the GRP
only if Cr(p) = n′/m′ · Cr(r). Assume for the sake of reductio that Cr coheres
with the GRP. Now suppose n/m ≥ n′/m′, so Cr(p) ≥ Cr(q), and (since Cr agrees
with %) so p % q. In the other direction, suppose p % q; so Cr(p) ≥ Cr(q), and
n/m ≥ n′/m′. So, p % q ↔ n/m ≥ n′/m′, which violates our assumptions above. So
Cr does not cohere with the GRP.

Now case (2). Add now the assumptions that there are p, q ∈ B such that
p � q, and that if p is minimal, then Cr(p) = 0. If p and q are both minimal
then p ∼ q, and if Cr agrees with % then Cr(p) = Cr(q) > Cr(s), for any s such
that s 6∼ p (and hence s � p). Since p and q are both 0/m-valued by definition,
the only way B2 might be violated is if at least one of the two propositions is
also n/m-valued, for some n > 0. Suppose this is the case of p; then by the earlier
reasoning, Cr coheres with the GRP only if Cr(p) = n/m · Cr(r). Since n/m > 0
and Cr(r) > 0, this is false; so Cr does not cohere with the GRP.

Case (3) is then straightforward given the above. Likewise, the second part
of the theorem (for sets of functions) follows the same structure as the proof just
given with only minor changes, and can be omitted.
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